GDR Atelier de recherche Plasmas magnétisés : Définition d'une source modulable 11 et 12 octobre, 2022 - Orléans

The Penning discharge

Sedina Tsikata ICARE, CNRS UPR3021 Orléans

sedina.tsikata@cnrs-orleans.fr

Introduction

Penning ionization gauge development: Penning and – 1930s and 1940s

F. M. Penning, Physica 3, 873 (1936)
F. M. Penning, Physica 4, 71 (1937)
F. M. Penning and K. Nienhius, Philips Tech. Rev. 11, 116 (1949)

emergence of pumping applications – 1950s, Varian

evacuation of ions by cathode material and reduction of pressure

Introduction

• Modern Penning device architecture

general applications: ion sources, vacuum gauges, and vacuum pumps

Helmer and Jepsen, Proc. IRE (1961)

2D PIC modelling electron density Electron density Electron densi time = 500 ns time = 100 ns a) 11.7 11.4 11.1 10.8 10.8 10. 10.2 10.2 9,30 -0.2 0.0 ¥ (cm) 0.2 0.4 -0.4 -0.2 0.0 ¥ (cm) 0.2 0.4 Electron density number/cm⁺3(log) 12.3 Electron density time = 550 ns time = 1200 ns 12.3 120 20 11.7 11.4 10.8 10.8 10.2 10.2 1,60 9.30 -0.2 0.0 ¥ (cm) D.2 0.4 -0.4 0.0 ¥ (cm) 0.2 -0.2

Carlsson et al., Phys. Plasmas 25, 061201 (2018)

• evidence of large-scale plasma rotation

edge density and radial current show similar time-scale variations

transport mechanism in simulations:

rotating spoke channels
radial current in short bursts
spoke "arc" of
connects discharge edge with center
electron motion along
equipotentials

2D PIC modelling

spoke rotation velocity << critical ionization velocity (Alfvén)

 $\omega_{s,th} = \sqrt{\frac{v_s^2 v_0}{v_*} k^2} = \sqrt{\frac{eE_r L_n}{m_i} k^2}$

spoke angular frequency scaling from collisionless Simon-Hoh

good agreement between theoretical and measured rotation frequencies

- numerical studies of spoke scaling
 - frequency with B, current, ion mass
- current flow dominated by spoke

2D PIC modelling

Powis et al., Phys. Plasmas 25, 072110 (2018)

Property	Symbol	Value	Units
Relative permittivity	\mathcal{E}_r	400	
Discharge radius	R_0	2.5	cm
Injection radius	R_i	0.1	cm
Applied magnetic field	B_0	100	G
Electron current	I_e	250	mA
Ion current	I_i	100	mA
Discharge current	I_d	-150	mA
Electron injection temperature	$T_{e,inj}$	5	eV
Ion injection temperature	$T_{i,inj}$	293	Κ
Electron beam energy	V_b	15	eV
Neutral pressure	P_n	1	mTor
Neutral temperature	T_n	293	Κ
Electron-neutral cross-section	σ_{en}	$2.88 imes 10^{-19}$	m^2

TABLE I. Physical parameters of simulations.

Theory

- accounting for formation of large-scale structures, "spokes"
 - ionization wave
 - modes driven by density gradient

collisionless Simon-Hoh instability (CSHI), often termed modified Simon-Hoh instability (MSHI)

F. C. Hoh, Phys. Fluids 6, 1184 (1963)

• for mode to be present: radial E and density gradient must be collinear

Hoh described:

- azimuthal charge separation
- electric field pushing plasma outwards
- amplification of instability

Theory

• collisionless Simon-Hoh instability (CSHI)

dispersion relation $\frac{\omega_*}{\omega - \omega_0} = \frac{k_{\theta}^2 c_s^2}{\omega^2}$ $\frac{\omega_* = -k_{\theta} k_B T_e / eBL_n}{\omega_0 = k_{\theta} E_r / B}$ E x B drift frequency

growth rate
$$\gamma = \frac{k_{\theta}c_s}{\omega_*} \sqrt{\omega_0 \omega_* - \frac{k_{\theta}^2 c_s^2}{4}}$$

potential density

Experimental characterization

FIG. 1. Rotating spoke seen along the axis of the Penning device with a fast-frame camera. B = 80 G is out of the page and E is radially inward (Xenon at 0.2 mTorr pressure).

Rodriguez et al., Plasmas 26, 053503 (2019)

FIG. 3. Change in oscillatory behavior of the plasma when changing the boundary. (Left) Plots of normalized ion probe signal $\hat{V} = \frac{n-(n)}{\langle n \rangle}$ for metal and glass boundaries, and their corresponding spectrum, for B = 30 G. (Right) Magnitude of variations, representative of instability, defined as $\delta n / \langle n \rangle$ as a function of *B*; δn is the standard deviation of the time signal of the main spectral component of the perturbation.

applied B = 30 - 150 G radial E = 200 V/m maximum Id = 1.2 A pressure ~ 3×10^{-4} mbar Te = 1 - 5 eVne = $10^{16} - 10^{17} / \text{m}^3$ Possible interest as flexible discharge

- operation with multiple gas types possible - He, Ar, Xe
- relatively open geometry for diagnostics access
- large range of operating regimes possible
 - pressure
 - magnetic field: 100s of gauss to 1 kG
- potentially relevant to simulation benchmark efforts
- controlled study of material interactions possible