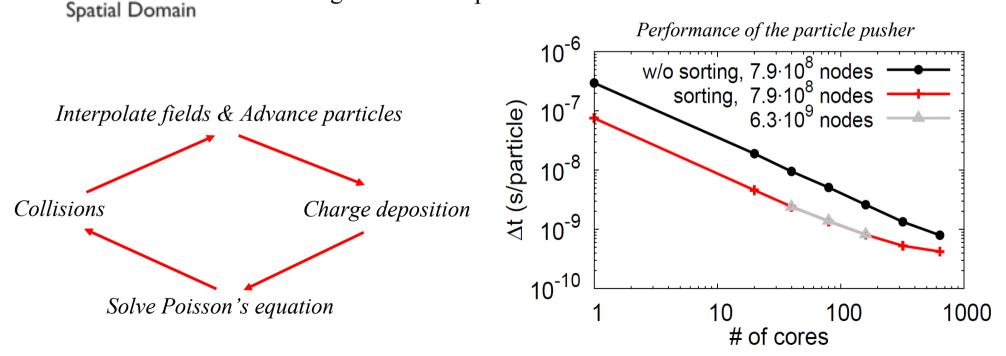
Modeling low temperature plasmas

G. Fubiani

CNRS/GREPHE/LAPLACE University of Toulouse (Paul Sabatier) 31062 Toulouse, France gwenael.fubiani@laplace.univ-tlse.fr



grid

particles

Numerical tools: Particle in Cell (PIC) with Monte-Carlo-Collisions (MCC)

- The model* is fully "homemade", explicit and electrostatic
 - 1D/2D/3D Cloud-In-Cell.
 - Parallelized (hybrid MPI and OpenMP)
 - Poisson solver is a multi-grid (2D/3D) or direct solver (2D, Pardiso)
 - Magnetic field is prescribed

*Developed by the LAPLACE (G. Fubiani & L. Garrigues). Other similar models designed by other groups (LPP, etc.)

Inclusion of a comprehensive physical chemistry: for instance, hydrogen gas with negative ions

Table 1. Electron collisions.g		
#	Reaction	Cross section reference
1	$e + H \rightarrow e + H (elastic)$	[71–75]
2	$e + H \rightarrow e + H$ (inelastic, 4 proc.)	[32]
3	$e + H \rightarrow 2e + H^+$	[32]
4	$e + H_2 \rightarrow e + H_2$ (elastic)	[76]
5	$e ~+~ H_2 ~\rightarrow~ 2e ~+~ H_2^+$	[32]
6	$e ~+~ H_2 ~\rightarrow~ 2e ~+~ H^+ ~+~ H$	[32]
	(2 proc.)	
7	$e + H_2 \rightarrow e + H_2$ (inelastic,	[32-38]
	16 proc.)	
8	$e + H_2 \rightarrow e + 2H (3 \text{ proc.})$	[32,77]
9	$e + H_3^+ \rightarrow 3H$	[32]
10	$e ~+~ H_3^+ ~\rightarrow~ H ~+~ H_2$	[32]
11	$e ~+~ H_3^+ ~\rightarrow~ e ~+~ H^+ ~+~ 2H$	[32]
12	$e ~+~ H_3^+ ~\rightarrow~ e ~+~ H^+ ~+~ H_2$	[32]
13	$e ~+~ H_2^+ ~\rightarrow~ 2H$	[32]
14	$e ~+~ H_2^+ ~\rightarrow~ e ~+~ H^+ ~+~ H$	[32,77]
	(2 proc.)	
15	$e ~+~ H_2^+ ~\rightarrow~ 2e ~+~ 2H^+$	[77]
16	$e + H^- \rightarrow 2e + H$	[32]
17	$e + H_2^* \rightarrow H^- + H (1\% \text{ of } H_2)$	[77]
18	$e + H_2^+ \rightarrow e + H_2^+$	(Coulomb) [22]
19	$e ~+~ H^+ ~\rightarrow~ e ~+~ H^+$	(Coulomb)[22]
20	$e ~+~ H_3^+ ~\rightarrow~ e ~+~ H_3^+$	(Coulomb)[22]

~60 reactions implemented in the PIC-MCC model

Table 2. Heavy particle processes.

#	Reaction	Cross section reference
1	$H_3^+ + H_2 \rightarrow H_3^+ + H_2$ (elastic)	[78]
2	$H_3^+ + H \rightarrow H_3^+ + H$ (elastic)	
3	$\mathrm{H_2^+} \ + \ \mathrm{H_2} \ \rightarrow \ \mathrm{H_3^+} \ + \ \mathrm{H}$	[43, 78]
4	$\mathrm{H}_2^+ \ + \ \mathrm{H}_2 \ \rightarrow \ \mathrm{H}_2 \ + \ \mathrm{H}_2^+$	[78]
5	$H_2^+ + H \rightarrow H_2^+ + H$ (elastic)	[79]
6	$\mathrm{H^{+}}$ + H \rightarrow H + $\mathrm{H^{+}}$	[80]
7	$\mathrm{H^{+}}~+~\mathrm{H}~\rightarrow~\mathrm{H^{+}}~+~\mathrm{H}$ (elastic)	[80]
8	$\mathrm{H^{+}}~+~\mathrm{H_{2}}~\rightarrow~\mathrm{H^{+}}~+~\mathrm{H_{2}}\left(\mathrm{elastic} ight)$	[78]
9	$\mathrm{H^{+}}$ + $\mathrm{H_{2}}$ \rightarrow $\mathrm{H^{+}}$ + $\mathrm{H_{2}}$ (inelastic,	[41-43,78]
	4 proc.)	
10	$\mathrm{H^-}$ + H \rightarrow e + 2H	[32]
11	$\mathrm{H^-}$ + H \rightarrow e + H ₂	[32]
12	$H^- + H_2 \rightarrow H^- + H_2 (elastic)$	[43]
13	$H^- + H \rightarrow H^- + H (elastic)$	[43]
14	$H^+ + H^- \rightarrow 2H (2 \text{ proc.})$	[32]
15	$\mathrm{H^+}~+~\mathrm{H^-}~\rightarrow~\mathrm{H_2^+}~+~\mathrm{e}$	[32]
16	$\mathrm{H^-}$ + $\mathrm{H_2}$ \rightarrow $\mathrm{H_2}$ + H + e	[32]
17	$\mathrm{H^-}$ + H \rightarrow H + H ⁻	[81]
18	$H + H \rightarrow H + H$	[80]
19	$H + H_2 \rightarrow H + H_2$	[80]
20	$H_2 + H_2 \rightarrow H_2 + H_2$	[82]

- Multi-fluid: electrons, ions, neutrals
- Continuity equations with chemistry source terms
- Full momentum equations including inertia terms
- Electron energy equation with magnetized heat flux
- Quasi-neutrality: plasma potential deduced from current continuity
- Boundary conditions from sheath theory, allowing for different wall materials: grounded, biased, dielectric
- Evolution in time and 2D plane perpendicular to magnetic field lines
- Parallel losses (along field lines) included via effective source terms (2D+½D) allowing for dielectric, grounded, or biased walls
- Magnetized fluxes handled through original numerical scheme using prediction/correction on shifted numerical grids

R. Futtersack, PhD thesis (University of Toulouse, 2014)

S. Sadouni, PhD thesis (University of Toulouse, 2020)

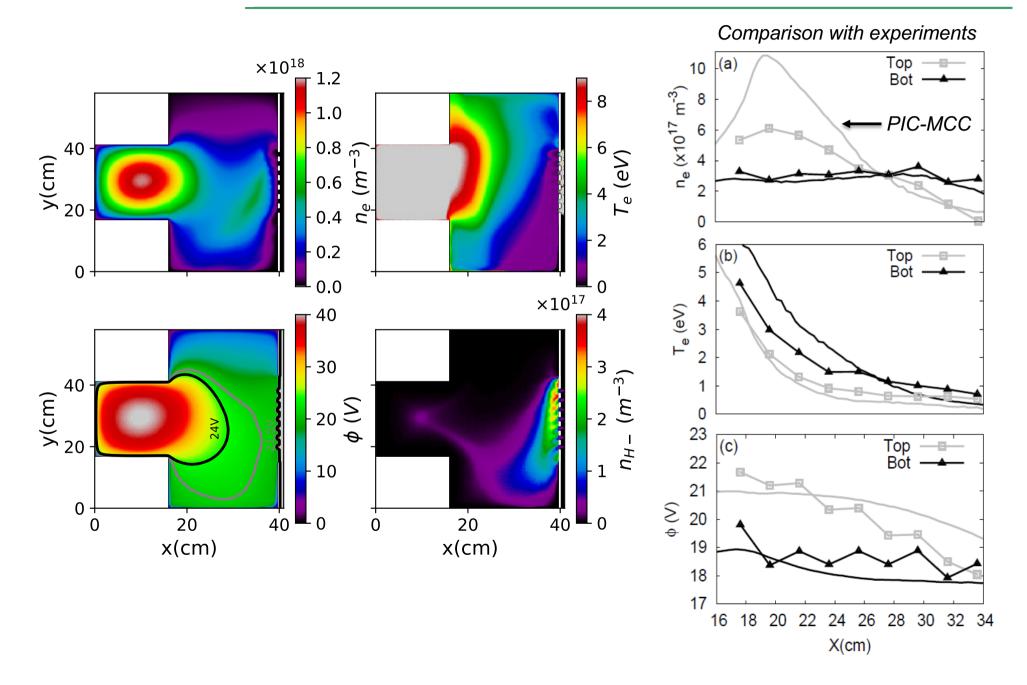
*Developed by G. Hagelaar

• Continuity & momentum equations for each species α :

Quasi-neutrality & current conservation:

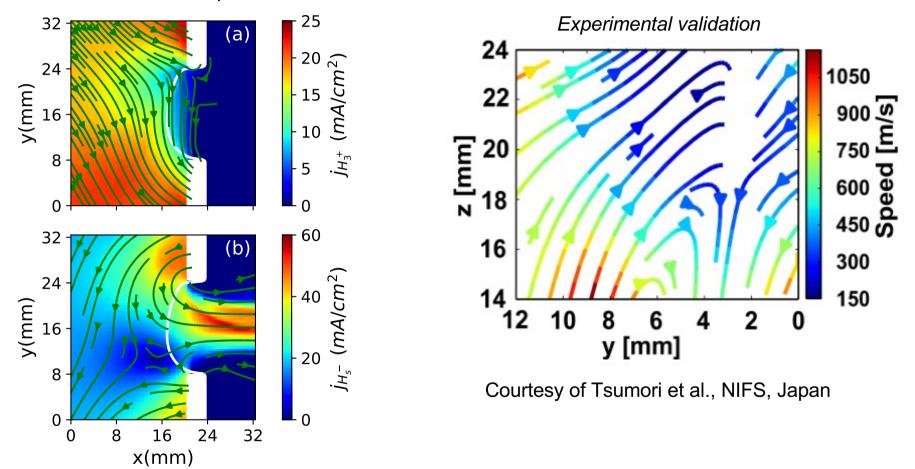
$$n_e = \frac{1}{e} \sum_{i} q_i n_i \qquad \nabla_{\perp} \cdot \left(e n_e \mathbf{w}_e(\Phi) \right) = \nabla_{\perp} \cdot \left(\sum_{i} q_i n_i \mathbf{w}_i \right) + \sum_{\alpha} q_{\alpha} L_{//\alpha}$$

• Electron energy:
$$\frac{3}{2} \frac{\partial n_e T_e}{\partial t} + \frac{5}{2} \nabla_{\perp} \cdot (n_e \mathbf{w}_e T_e) + \nabla_{\perp} \cdot \mathbf{Q}_e = P_{\text{ext}} + en \mathbf{w}_e \cdot \nabla_{\perp} \Phi - L_{\text{col}} - L_{//T}$$
$$\frac{\partial \mathbf{Q}_e}{\partial t} + v \mathbf{Q}_e - \frac{e}{m_e} \mathbf{B} \times \mathbf{Q}_e = -\frac{5n_e T_e}{2m_e} \nabla T_e$$


Boundary conditions from sheath theory:

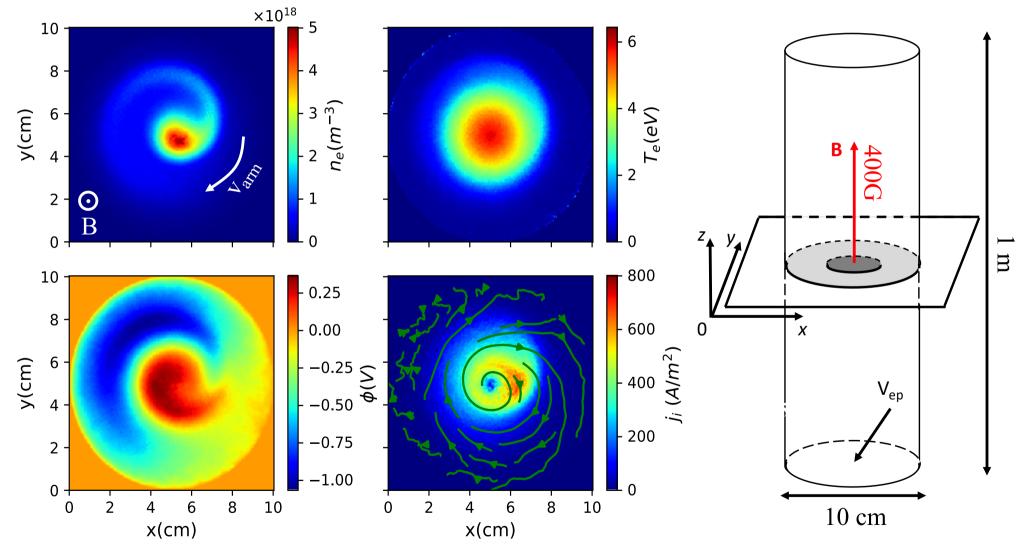
 $\mathbf{w}_i \cdot \mathbf{n} \ge \left(T_e / m_i\right)^{1/2}$

 $\mathbf{w}_{e} \cdot \mathbf{n} = \left(T_{e} / 2\pi m_{e}\right)^{1/2} \exp\left(-e(\Phi - \Phi_{w}) / T_{e}\right) \qquad \mathbf{Q}_{e} \cdot \mathbf{n} = n_{e} \mathbf{w}_{e} \cdot \mathbf{n} \left(e(\Phi - \Phi_{w}) - \frac{1}{2}T_{e}\right)$


Examples: plasma properties of a fusion-type negative ion source (2.5D-3V PIC-MCC)

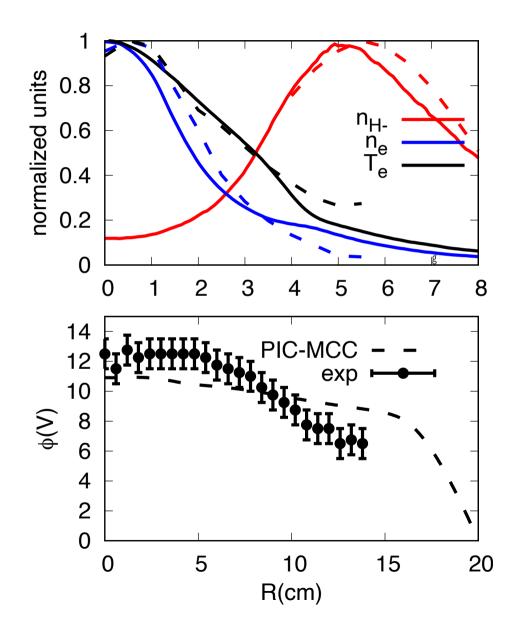
Extraction of negative ions (PIC-MCC)

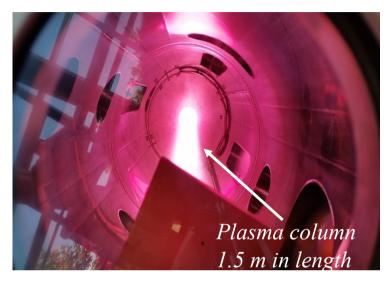
Zoom near one aperture

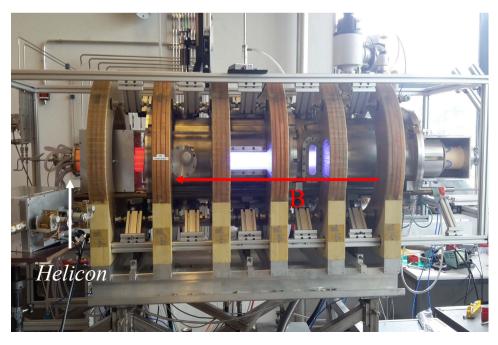


Slight magnetization of the negative ions affects the beamlet current density profile

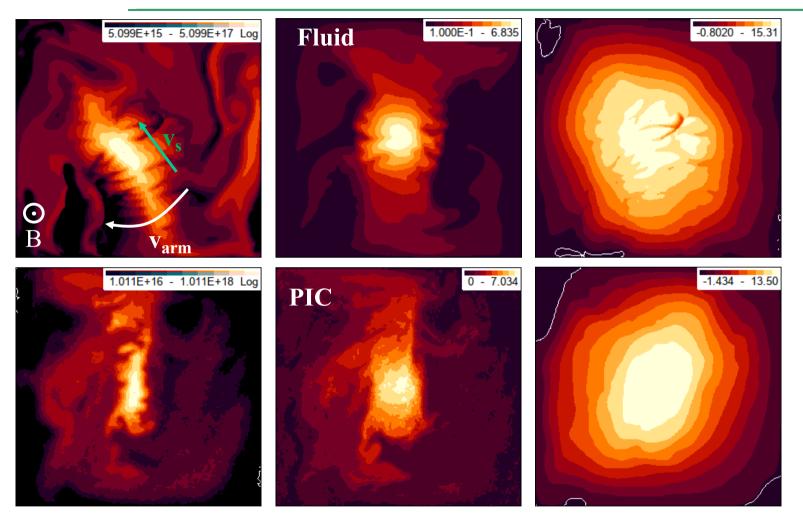
Rotating structures in RF Penning discharges (2.5D-3V PIC-MCC)


Hydrogen gas, 400G, 0.3 Pa, 2.4 kW, floating end-plates

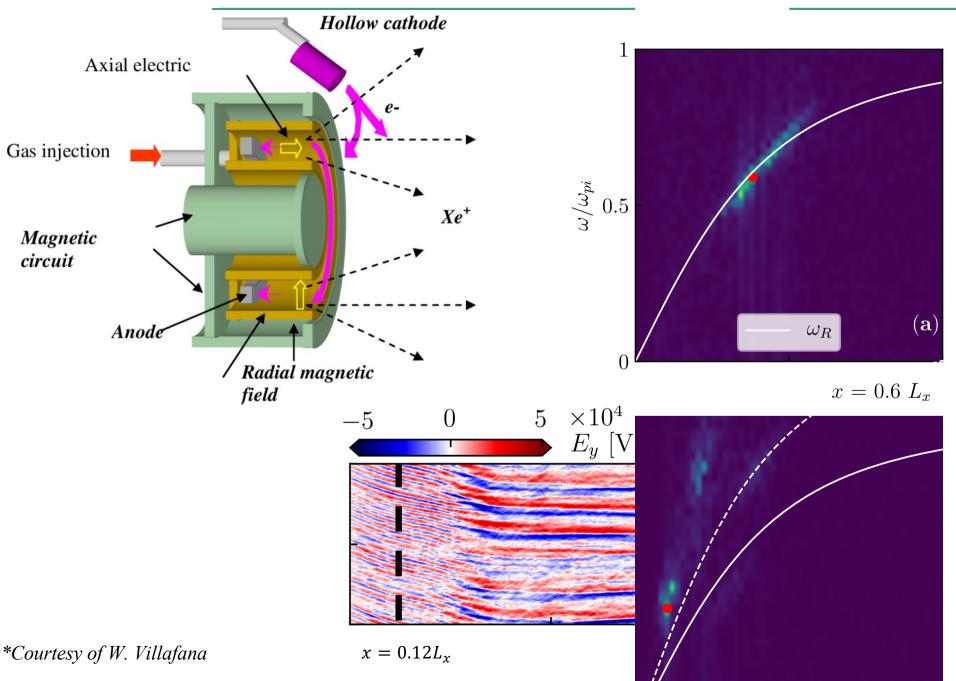



Particle diamagnetic and $E \times B$ drifts are closed

Comparison with experiments performed on RAID at SPC EPFL



Comparison PIC vs. fluid* models (2.5D). Large scale structure formation in RF Penning discharges



- Arm velocity v_{arm} same direction and magnitude as $E \times B$ drift (also for the ions)
- Fine structures v_s rotate in the direction of the electron diamagnetic drift

*Model developed by G. Hagelaar

2D axial azimuthal model of a Hall Thruster* (2D PIC-MCC calculation)

- Numerical tools are readily available or in development to model Low Temperature (magnetized) Plasma LTP devices.
- 1D/2D/3D parallelized OpenMP/MPI explicit PIC-MCC algorithms.
- Electrostatic with prescribed magnetic field maps.
- Can cope with arbitrary physical-chemistry.
- 2.5D fluid models including the magnetic field.
- <u>2D/3D PIC-MCC developments</u> : (i) use of sparse grids, (ii) fully implicit energy and charge conserving algorithms, (iii) electromagnetic.