

Le projet SPEKTRE

Sheaths, Plasma Edge Kinetic Turbulence Radiofrequency Experiment

F. Brochard, D. Genève & SPEKTRE collaborators Frederic.brochard@univ-lorraine.fr

Atelier <u>de recherche</u>

Plasmas magnétisés : Définition d'une source modulable

Travail réalisé / en cours

Conception et possibilités de diagnostics

SPEKTRE: Sheaths, Plasma Edge Kinetic Turbulence Radio-frequency Experiment

Mode « Plasmas Chauds » : électrons et ions magnétisés

Décharge « standard » : pulses avec plateau de 2s @0.44T, toutes les 10-15 minutes, avec jusqu'à 100 kW de chauffage ICRF @27 MHz

Mode « Plasmas Froids » : électrons magnétisés, ions non magnétisés

Décharge « standard » : décharge stationnaire (jusqu'à plusieurs heures) @ B ≤ 0.1 Tesla, avec source hélicon 20 kW @ 13,56 MHz. Dans enceinte principale, ou possibilité enceinte secondaire.

SPEKTRE: Sheaths, Plasma Edge Kinetic Turbulence Radio-frequency Experiment

Mode « Plasmas Chauds » : électrons et ions magnétisés

Décharge « standard » : pulses avec plateau de 2s @0.44T, toutes les 10-15 minutes, avec jusqu'à 100 kW de chauffage ICRF @27 MHz

- Génération et chauffage d'un plasma par ICRH (onde lente & onde rapide, effets des gaines RF, limiteurs actifs)
- Aspects fondamentaux de la turbulence et du transport turbulent dans les plasmas magnétisés
- Interactions plasma/surface dans les plasmas magnétisés (incl. gaines & arcs, et parois de métal liquide)
- Développement instrumental et diagnostics

SPEKTRE: Sheaths, Plasma Edge Kinetic Turbulence Radio-frequency Experiment

Mode « Plasmas Froids » : électrons magnétisés, ions non magnétisés

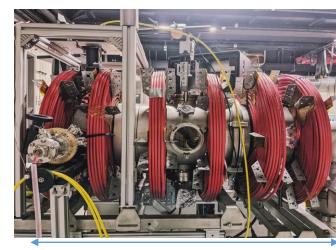
Décharge « standard » : décharge stationnaire (jusqu'à plusieurs heures) @ B ≤ 0.1 Tesla, avec source hélicon 20 kW @ 13,56 MHz. Dans enceinte principale, ou possibilité enceinte secondaire.

- Interactions plasma/surface avec des électrons magnétisés,
- Aspects fondamentaux des instabilités dans les plasmas faiblement magnétisés,
- Développement instrumental et diagnostics,
- Démonstrateur procédés plasmas à l'échelle pré-industrielle.

CM

Version « grand modèle » de notre manip ALINE utilisée pour l'étude des gaines RF.

Générateur RF 10 kHz - 250 MHz

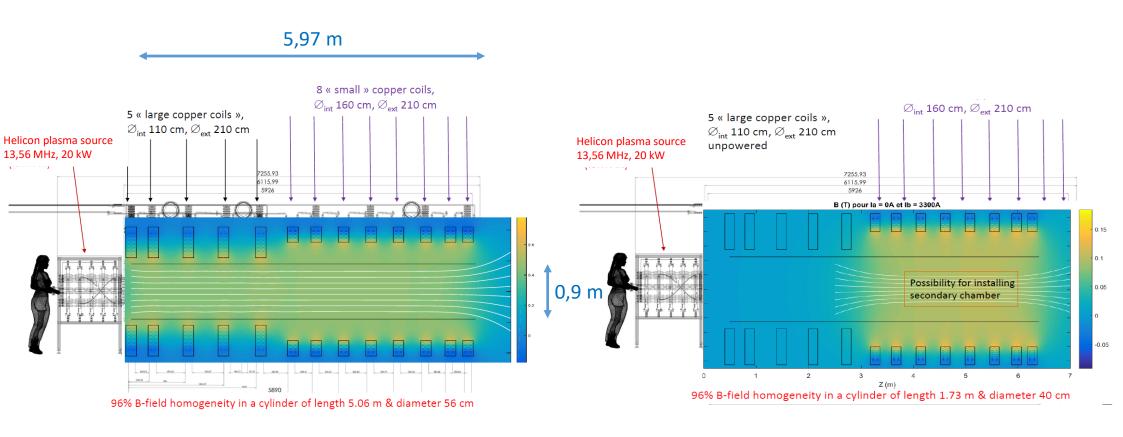

P_{max}: 600W $T_{a}: 2-6 \text{ eV}$

 n_a : qq 10^{16} m⁻³

 ρ_e : 50µm ρ_i : 4mm (He⁺)

 λ_D : 130 μm

Imagerie vis – IR, sonde Langmuir 3D



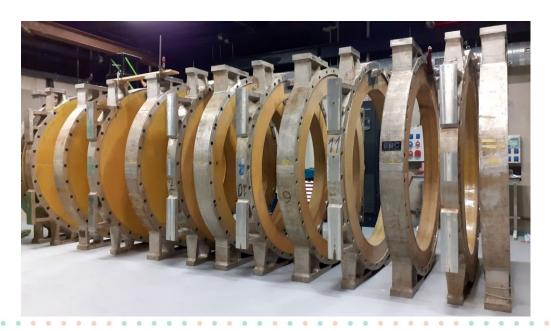
Configurations magnétiques et emplacements bobines

Config. Principale
B homogène à 96% dans volume L = 5.06m Ø 0.56m

Config alternative pour études spécifiques B homogène à 96% dans volume L = 1.73m $\oslash 0.4$ m

Travail réalisé / en cours

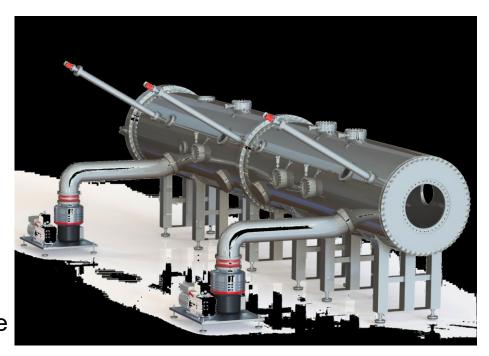
Conception et possibilités de diagnostics


Travail réalisé / en cours

Juin 2020 Signature d'une convention de collaboration avec l'IPP Garching (permettant le don d'équipements de l'IPP)

Hiver 2020/21 Destruction dalle béton et coulage d'une nouvelle dalle renforcée pour supporter le poids de l'équipement (40 t)

Printemps-été 2021 Réception des premiers lots d'équipements de l'IPP Garching : 13 bobines planes de W7-AS, systèmes auxiliaires (pompes, jauges), systèmes d'acquisition de données...



Travail réalisé / en cours

Septembre 2021 Mise en place des bobines

1er semestre 2022 Installation structure-support
Conception enceinte
Conception banc métal liquide
Réflexions sur l'architecture de

Travail réalisé / en cours

Novembre 2022 Livraison du dernier lot en provenance de l'IPP Garching : chambre source hélicon d'IShTAR, antenne ICRH 1-strap, divers diagnostics

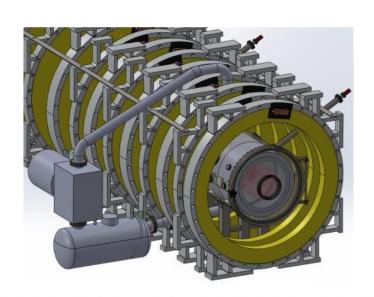
Enceinte: Financement acquis (CPER) et disponible début 2023, AO pour la réalisation et mise en place prévu fin 2022 pour mise en place en septembre 2023.

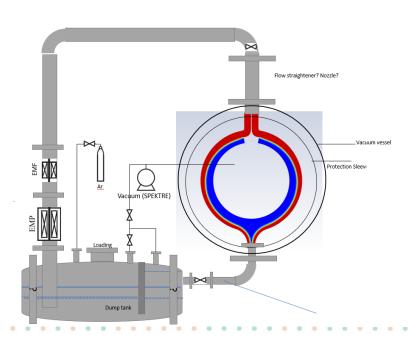
La suite du planning dépendra des financements obtenus et des dates de mise à disposition des fonds

Bancs de supercondensateurs, aménagement salle de contrôle, pilotage, et générateurs ICRF: Besoin de 2,5 M€ (inclus dans la demande PEPR) : re-dépôt PEPR Fusion2Grid et demande FEDER

Objectif actualisé de démarrage en mode « plasmas froids » : novembre 2023

Objectif actualisé de démarrage en mode « plasmas chauds » : Compter 14 mois à compter de la mise à disposition des fonds pour les A0 + installation.

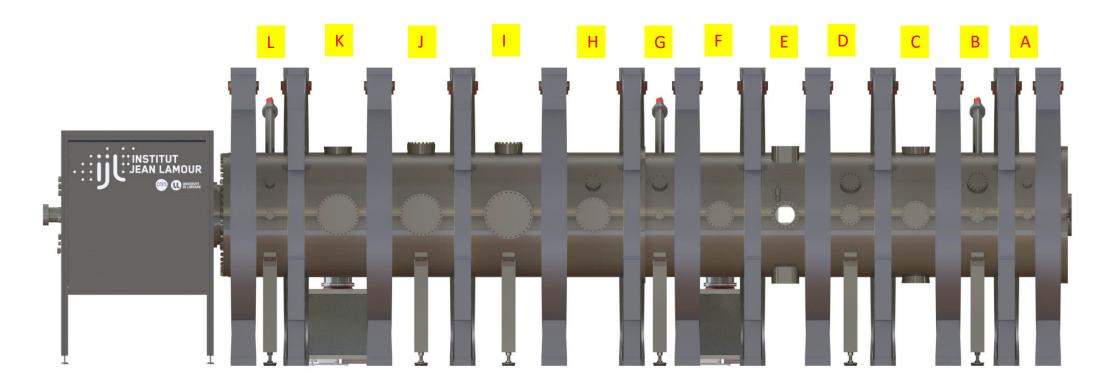

Banc-test métal liquide



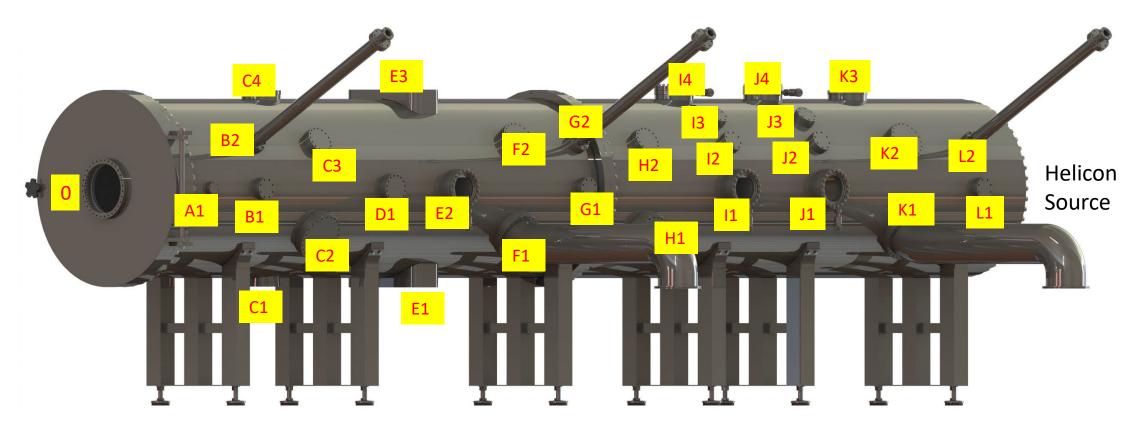
Collaboration avec Renaissance Fusion et IRFM

Test de l'écoulement d'une paroi de métal liquide face au plasma

- Banc-test en co-conception, financé par Renaissance Fusion,
- Injection LM par le haut, boucle en circuit fermé,
- Étude de la mise en forme sous l'action jxB,
- Contrôle de l'écoulement par rétro-action
- Interactions avec le plasma, évaporation et transport de la vapeur métallique
- Pulse 0.44 T et 0.1 T stationnaire

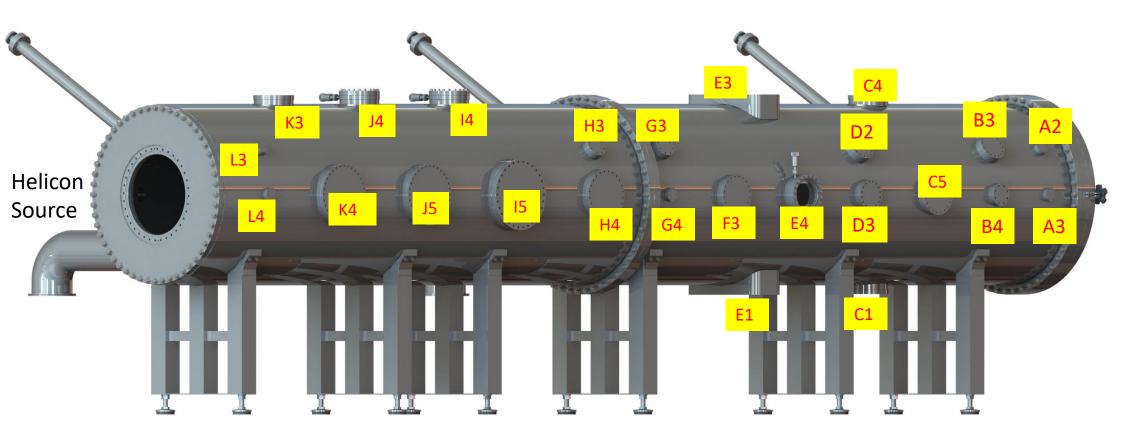


Travail réalisé / en cours


Conception et possibilités de diagnostics

Diagnostics disponibles: jauges pression, caméra IR, 4 caméras rapides (vis), Spectros UV/vis, interféromètre, Spectro de masse, (TA)LIF, systèmes d'acquisition 128 voies 10 MHz

Diagnostics supplémentaires prévus: Sondes Mirnov & B-dots, sondes (fixes, réseaux, et mobiles – Langmuir, RFA, Mach, 5-tips), Réflectomètre, Puissance RF réfléchie, imagerie ultrasonique, et éventuellement à + long terme Diffusion Thomson



Diagnostics disponibles: jauges pression, caméra IR, 4 caméras rapides (vis), Spectros UV/vis, interféromètre, Spectro de masse, (TA)LIF, systèmes d'acquisition 128 voies 10 MHz

Diagnostics supplémentaires prévus: Sondes Mirnov & B-dots, sondes (fixes, réseaux, et mobiles – Langmuir, RFA, Mach, 5-tips), Réflectomètre, Puissance RF réfléchie, imagerie ultrasonique, et éventuellement à + long terme Diffusion Thomson

Conceptual design: list of ports

Port	DN	Main use	Other possible uses		
0	250	Fast imaging (axial view of the column)	Other optical diagnostics Probe manipulatot		
A1	40	Feedthrough for cables (probes)	Pressure gauge		
B1 A2- A3	63	interferometer			
B2	63	Pressure gauge			
В3	100	Camera view on LM wall			
B4	63	interferometer			
C1	200	Liquid metal extraction	Plasma diag (when LM testbed removed)		
C2	200	Pumping (when no LM testbed)			
C3	100	Actuators for control of LM experiments	Plasma diag (when LM testbed removed)		
C4	160	Liquid metal injection	Plasma diag (when LM testbed removed)		
C5	160	Actuators for control of LM experiments	Plasma diag (when LM testbed removed)		
D1	100	Optical diagnostics of LM wall	Plasma diag (when LM testbed removed)		
D2	100	Optical diagnostics of LM wall	Plasma diag (when LM testbed removed)		
D3	100	Optical diagnostics of LM wall	Plasma diag (when LM testbed removed)		

Conceptual design: list of ports

Port	DN	Main use	Other possible uses		
E1	custom	Multi-channel OES	TALIF, laser scatterring		
E2	160	Vis/IR imaging	Probe manipulator, TALIF		
E3	custom	Multi-channel OES	TALIF, laser scatterring		
E4	160	Vis/IR imaging	Probe manipulator, TALIF		
F1	200	Pumping			
F2	160	tbd			
F3	160	Probe manipulator	Plasma diag		
G1	63	tbd			
G2	63	Pressure gauge			
G3	63	tbd			
G4	40	Feedthrough for cables (probes)			
H1	200	Pumping			
H2-H3	160-63	tbd			
H4	200	Manipulator (probe, sample holder)			

18

Conceptual design: list of ports

Port	DN	Main use	Other possible uses		
I1	160	Waveguide (ICRF antenna)			
12-13	63	Feedthrough for cables (probes)			
14	160	Optical diag	Probes		
15	300	Manipulator	Front view on the ICRF antenna		
J1	160	Waveguide (ICRF antenna)			
J2-J3	63	Feedthrough for cables (probes)			
J4	160	Optical diag	Probes		
J5	250	Front view on the ICRF antenna (IR cam)			
K1	200	Pumping			
K2	160	tbd			
К3	160	tbd			
K4	160	Front view on the ICRF antenna (vis/IR cam)			
L1	63	Probe	Interferometer		
L2	63	Pressure gauge			
L3-L4	40	Feedthrough for cables	Interferometer (L4)		

Vos idées

Propositions d'expériences,

Développement instrumental,

Accompagnement modélisation,

... déclarations d'intérêt bienvenues!

Merci!

Annexes

Joint research agreement Univ. Lorraine - IPP Garching

Signed in 2020 in order to allow the donation of IPP equipments to UL. Includes a joint research project, 3 axes:

- i) Radio-frequency heating and sheath effects (S. Heuraux / V. Bobkov)
- Modelling of RF sheaths & their effects around antennas (experimental validation on ALINE & SPEKTRE)
- Interpretation of diagnostics in RF plasmas (RFA, Langmuir probes)
- RF active compensation based on the excitation of slow waves by the active structure of the antenna (modelling + exp. on ALINE & SPEKTRE)
- Fundamental studies of the propagation of RF waves in magnetized plasmas
- Arcing in presence of RF fields
- ii) Arc, particle & heat fluxes on the plasma exposed surfaces (F. Brochard / V. Rohde)
- iii) Impurity transport & Turbulence (E. Gravier / U. Stroth)

Joint research agreement Univ. Lorraine - IPP Garching

Signed in 2020 in order to allow the donation of IPP equipments to UL. Includes a joint research project, 3 axes:

- i) Radio-frequency heating and sheath effects (S. Heuraux / V. Bobkov)
- ii) Arc, particle & heat fluxes on the plasma exposed surfaces (F. Brochard / V. Rohde)
- Thresholds for triggering and sustaining an arc in magnetized plasma, depending on surface properties: experiments & 2D/3V PIC simulations
- Impurity and droplets release by arcs (& connection to impurity transport)
- Al-methods for fast & efficient arc detection & application to SPEKTRE & AUG
- Connection to droplet ejection (SPEKTRE, DropArc)
- iii) Impurity transport & Turbulence (E. Gravier / U. Stroth)

Joint research agreement Univ. Lorraine - IPP Garching

Signed in 2020 in order to allow the donation of IPP equipments to UL. Includes a joint research project, 3 axes:

- i) Radio-frequency heating and sheath effects (S. Heuraux / V. Bobkov)
- ii) Arc, particle & heat fluxes on the plasma exposed surfaces (F. Brochard / V. Rohde)
- iii) Impurity transport & Turbulence (E. Gravier / U. Stroth)
- Behaviour of I-mode regime presenting weakly coherent & localized GAM & connection with blob-generating mechanisms (AUG)
- Gyrokinetic modeling of impurity transport with TERESA, applied to AUG
- Propagation of waves in the μ-wave range in turbulent plasma, to model the impact of edge fluctuations on heating performance (SPEKTRE exp + simulations in Stuttgart)

Paramètres plasma attendus (mode « forte puissance »)

Parameters	SPEKTRE		
Vac. vessel: Length (m) Diameter (cm)	L = 5.97 Ø 90 cm		
Plasma source	Helicon 20 kW @13,56 MHz +100 kW ICRF @27 MHz		
B (mT)	50-500 (réf. H 440 mT)		
Pulse	1-2s (flattop) / 15 min		
gas	H (D, He, Ar)		
n _e (m ⁻³)	1-10.10 ¹⁸ (H)		
T _e (eV)	2-10		
T _i (eV)	1-10		
λ _D (μm)	3 (T_e 2eV n 10 ¹⁹)-20 (T_e 10 eV n 10 ¹⁸)		
υ _{ee} (s ⁻¹)	5.10 ⁴ - 10 ⁷		
v_{en} (s ⁻¹)	$4.10^4 - 4.10^6$		
υ _{in} (s ⁻¹)	$10^2 - 3.10^5$		
υ _{ii} (s ⁻¹)	$5.10^2 - 6.10^4$		

Parameters	SPEKTRE
Ω _{ci} (B=0.44 T)	6.75 MHz (H) 1.69 MHz (He) 0.15 MHz (Ar)
Ω_{ce} (B=0.44 T)	12 GHz
ρ _e (B=0.44 T)	10-20.10 ⁻⁵ m
ρί	4.10 ⁻³ m (H) 8.10 ⁻³ m (He)
c _s (m/s)	2.2 10 ⁴ (H) 1.1 10 ⁴ (He)
V _{te} (m/s)	1.5 10 ⁶
V _{ti} (m/s)	2.10 ⁴ (H) 1.10 ⁴ (He)

Aperçu général du projet : comparatif autres machines linéaires

	SPEKTRE	IShTAR	LAPD	LMD-U PANTA	CSDX	MAGNUM- PSI
Enceinte: Longueur (m) Diamètre (cm)	L = 5.97 Ø 90 cm	L = 1 Ø 110 cm	L = 30 ∅ 100 cm	L = 4.05 Ø 45 cm	L = 2.80 Ø 20 cm	>10m Ø 20 cm
Source plasma	Hélicon 20kW @13,56 MHz +100 kW RF @27 MHz	Hélicon 3 kW @11.76 MHz +1 kW RF @6MHz	LaB ₆ cathode +100 kW RF @2-6 MHz	Hélicon 3-6 kW @7MHz	Hélicon 1.5 kW @13.56 MHz	Cascaded arc
B (mT)	0-500 (scénario réf. H 440 mT)	< 250 (Typ. 150)	50-200	20-150	0- 150	0-240
Pulse	1-2s (flattop) / 10 min	12s	10 ms /1Hz	0.5 – 2 s		
gaz	H (D, He, Ar)	He, Ar	He, Ne	Ar	Ar	H, D, He, Ar
n _e	1-10. 10 ¹⁸ m ⁻³ (H)	5.10 ¹⁶ (He) 10 ¹⁸ (Ar)	$10^{17} - 2.10^{19}$	10 ¹⁹	10 ¹⁹	10 ¹⁹ -10 ²¹
Te (eV)	2-10	5 (Ar) -10 (He)	5	3	3-4	0.1 - 10
Ti (eV)	1-10	0.02	1	0.3	0.6	~eV